Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α Overexpression Increases Lipid Oxidation in Myocytes From Extremely Obese Individuals

نویسندگان

  • Leslie A. Consitt
  • Jill A. Bell
  • Timothy R. Koves
  • Deborah M. Muoio
  • Matthew W. Hulver
  • Kimberly R. Haynie
  • G. Lynis Dohm
  • Joseph A. Houmard
چکیده

OBJECTIVE To determine whether the obesity-related decrement in fatty acid oxidation (FAO) in primary human skeletal muscle cells (HSkMC) is linked with lower mitochondrial content and whether this deficit could be corrected via overexpression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). RESEARCH DESIGN AND METHODS FAO was studied in HSkMC from lean (BMI 22.4 +/- 0.9 kg/m(2); N = 12) and extremely obese (45.3 +/- 1.4 kg/m(2); N = 9) subjects. Recombinant adenovirus was used to increase HSkMC PGC-1alpha expression (3.5- and 8.0-fold), followed by assessment of mitochondrial content (mtDNA and cytochrome C oxidase IV [COXIV]), complete ((14)CO(2) production from labeled oleate), and incomplete (acid soluble metabolites [ASM]) FAO, and glycerolipid synthesis. RESULTS Obesity was associated with a 30% decrease (P < 0.05) in complete FAO, which was accompanied by higher relative rates of incomplete FAO ([(14)C]ASM production/(14)CO(2)), increased partitioning of fatty acid toward storage, and lower (P < 0.05) mtDNA (-27%), COXIV (-35%), and mitochondrial transcription factor (mtTFA) (-43%) protein levels. PGC-1alpha overexpression increased (P < 0.05) FAO, mtDNA, COXIV, mtTFA, and fatty acid incorporation into triacylglycerol in both lean and obese groups. Perturbations in FAO, triacylglycerol synthesis, mtDNA, COXIV, and mtTFA in obese compared with lean HSkMC persisted despite PGC-1alpha overexpression. When adjusted for mtDNA and COXIV content, FAO was equivalent between lean and obese groups. CONCLUSION Reduced mitochondrial content is related to impaired FAO in HSkMC derived from obese individuals. Increasing PGC-1alpha protein levels did not correct the obesity-related absolute reduction in FAO or mtDNA content, implicating mechanisms other than PGC-1alpha abundance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to “Overexpression of PGC-1α Increases Fatty Acid Oxidative Capacity of Human Skeletal Muscle Cells”

We investigated the effects of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) overexpression on the oxidative capacity of human skeletal muscle cells ex vivo. PGC-1α overexpression increased the oxidation rate of palmitic acid and mRNA expression of genes regulating lipid metabolism, mitochondrial biogenesis, and function in human myotubes. Basal and insulin-stimulated deo...

متن کامل

The effect of Nordic training on plasma levels of Peroxisome proliferator-activated receptor-γ coactivator 1-α and Sirtuin 6 in elderly women with diabetes

Introduction: Nordic walking training has many benefits in improving the condition of the disabled elderly. Then the aim of this study was to evaluate the effect of Nordic walking training on plasma levels of PGC1α and SIRT6 in elderly women with diabetes. Materials and Methods: In this quasi-experimental study, 27 elderly women (age: 65.45±2.70 years) with type 2 diabetes were selected and ran...

متن کامل

Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis

The contributions of altered post-transcriptional gene silencing to the development of metabolic disorders remain poorly understood thus far. The objective of this study was to evaluate the roles of miR-181a in the regulation of hepatic glucose and lipid metabolism. MiR-181a is abundantly expressed in the liver, and we found that blood and hepatic miR-181a levels were significantly increased in...

متن کامل

Gly482Ser mutation impairs the effects of peroxisome proliferator-activated receptor γ coactivator-1α on decreasing fat deposition and stimulating phosphoenolpyruvate carboxykinase expression in hepatocytes.

Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a transcriptional coactivator of nuclear receptor peroxisome proliferator-activated receptor γ that critically regulates glucose and fat metabolism. Although clinical evidence suggests that Gly482Ser polymorphism of PGC-1α is associated with an increased incidence of nonalcoholic fatty liver disease, a direct role for Gly48...

متن کامل

Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1α gene expression in hypoxia.

The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key determinant of cardiac metabolic function by regulating genes governing fatty acid oxidation and mitochondrial biogenesis. PGC-1α expression is reduced in many cardiac diseases, and gene deletion of PGC-1α results in impaired cardiomyocyte metabolism and function. Reduced fuel supply ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010